Search results

1 – 2 of 2
Article
Publication date: 2 November 2018

Majed Mokhtari, M. Shahravy and M. Zabihpoor

The purpose of this study is to focus on the developments of carbon fiber reinforced polymer (CFRP) panels with stepwise graded properties on adhesive layer. The various arranges…

Abstract

Purpose

The purpose of this study is to focus on the developments of carbon fiber reinforced polymer (CFRP) panels with stepwise graded properties on adhesive layer. The various arranges of the graded properties of the adhesive layer have been checked according to experimental results of the literatures and based on applicability.

Design/methodology/approach

The finite element (FE) models and experimental modal tests of the manufactured CFRP sandwich panel specimens have been investigated. The core thickness, core density and orientation of the fiber direction of the sandwich panel face – sheets have been parametrically checked based on modal behavior. Two fully free and fully clamped boundary conditions (BC) have been checked in stepwise graded adhesive zone (SGAZ) cases and first five non-zero natural frequencies (NF) have been compared. Dynamic response of the SGAZ includes modal analysis and transient dynamic loading have been performed numerically with ABAQUS 6.12 well-known FE code.

Findings

The first non-zero NF of SGAZ Case 4 was 11.69 per cent higher than homogenous Case 2 and 7.06 per cent lower than Case 1 in fully free boundary conditions. A total of 26.38 per cent is the greatest discrepancy between fist five non-zero NFs of all cases with two BCs (Case 1 vs Case 2 in fully clamped BC). Maximum structural damping behavior and minimum stress picks have been studied during transient dynamic loading analysis of CFRP panel with SGAZ. SGAZ Case 3 (middle adhesive with lower modulus) has increased the maximum structural damping while reducing the minimum out of plain tip displacements during transient dynamic loading by 111.26 per cent in comparison with homogenous Case 2. Also, Case 3 has reduced the Mises stress picks on the adhesive region by 605.68 per cent.

Practical implications

Making a stepwise graded adhesive region (without any added mass) has been shown that it is a novel and useful way to achieve a wide range of stiffness on CFRP panels.

Originality/value

Development of the sandwich panels with various stiffness and damping properties.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 July 2021

Nicole Gomes Dias, Beltran Nadal Arribas, Paulo Gordo, Tiago Sousa, João Marinho, Rui Melicio, António Amorim and Patrick Michel

This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that…

Abstract

Purpose

This paper aims to report the first iteration on the Light Detection and Ranging (LIDAR) Engineering Model altimeter named HELENA. HELENA is a Time of Flight (TOF) altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km. Thermal-mechanical and radiometric simulations of the HELENA telescope are reported in this paper. The design is subjected to vibrational, static and thermal conditions, and it was possible to conclude by the results that the telescope is compliant with the random vibration levels, the static load and the operating temperatures.

Design/methodology/approach

The Asteroid Impact & Deflection Assessment (AIDA) is a collaboration between the NASA DART mission and ESA Hera mission. The aim scope is to study the asteroid deflection through a kinetic collision. DART spacecraft will collide with Didymos-B, while ground stations monitor the orbit change. HERA spacecraft will study the post-impact scenario. The HERA spacecraft is composed by a main spacecraft and two small CubeSats. HERA will monitor the asteroid through cameras, radar, satellite-to-satellite doppler tracking, LIDAR, seismometry and gravimetry.

Findings

The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.

Originality/value

In this paper is reported the first iteration on the LIDAR Engineering Model altimeter named HELENA. HELENA is a TOF altimeter that provides time-tagged distances and velocity measurements. The LIDAR can be used for support near asteroid navigation and provides scientific information. The HELENA design comprises two types of technologies: a microchip laser and low noise sensor. The synergies between these two technologies enable developing a compact instrument for range measurements of up to 14 km.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 2 of 2